Poekl, G (2016). Newcomb-Benford's Law ohne Limits. 03.16 ZRFC Risk, Fraud & Compliance, Erich-Schmid-Verlag, Berlin, Germany, pp. 115-120. GER
This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Diekmann, A and Jann, B (2010). Benford’s Law and Fraud Detection: Facts and Legends. German Economic Review 11(3), pp. 397–401. DOI:10.1111/j.1468-0475.2010.00510.x.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2.
|
|
|
|
|
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571.
|
|
|
|
|
Winter, C, Schneider, M and Yannikos, Y (2012). Model-Based Digit Analysis for Fraud Detection overcomes Limitations of Benford Analysis. Availability, Reliability and Security (ARES 2012), Seventh International Conference, August 20–24, 2012, Prague, Czech Republic.
IEEE CS volume E4775, pages 255–261.
IEEE Computer Society. ISSN/ISBN:978-1-4673-2244-7 . DOI:10.1109/ARES.2012.37.
|
|
|
|
|