Allen, DP (1999). A new approach to the first digit phenomenon. The Toth-Maatian Review 14(3), pp. 6839-6847.
This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
 |
|
|
|
Bumby, R and Ellentuck, E (1969). Finitely additive measures and the first digit problem. Fundamenta Mathematicae 65, pp. 33-42. ISSN/ISBN:0016-2736.
|
 |
|
|
|
Flehinger, BJ (1966). On the Probability that a Random Integer has Initial Digit A. American Mathematical Monthly 73(10), pp. 1056-1061. ISSN/ISBN:0002-9890. DOI:10.2307/2314636.
|
 |
|
|
|
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.
|
 |
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
 |
|
|
|
Schatte, P (1983). On H∞ -summability and the uniform distribution of sequences. Math. Nachr. 113, 237-243. DOI:10.1002/mana.19831130122.
|
 |
|
|
|
Whitney, RE (1972). Initial digits for the sequence of primes. American Mathematical Monthly 79(2), pp. 150-152. ISSN/ISBN:0002-9890.
|
 |
|
|
|