Wojcik, MR (2013). How fast increasing powers of a continuous random variable converge to Benford’s law. Statistics and Probability Letters 83, pp. 2688–2692.
This work cites the following items of the Benford Online Bibliography:
Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738.
|
|
|
|
|
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175.
|
|
|
|
|
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136.
|
|
|
|
|
Lolbert, T (2008). On the non-existence of a general Benford's law. Mathematical Social Sciences 55(2), pp. 103-106. ISSN/ISBN:0165-4896. DOI:10.1016/j.mathsocsci.2007.09.001.
|
|
|
|
|
Ross, KA (2011). Benford's Law, a growth industry. American Mathematical Monthly 118 (7), pp. 571-583. ISSN/ISBN:0002-9890. DOI:10.4169/amer.math.monthly.118.07.571.
|
|
|
|
|
Sandron, F (2002). Do populations conform to the law of anomalous numbers?. Population 57(4/5), 753-761 (translated from French by SR Hayford). ISSN/ISBN:1634-2941. DOI:10.3917/popu.204.0761.
|
|
|
|
|
Turner, PR (1982). The Distribution of Leading Significant Digits. IMA Journal orf Numerical Analysis 2(4), 407-412. ISSN/ISBN:0272-4979. DOI:10.1093/imanum/2.4.407.
|
|
|
|
|