This work cites the following items of the Benford Online Bibliography:
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Block, HW and Savits, TH (2010). A General Example for Benford Data. The American Statistician 64(4), pp. 335-339. | ||||
Boyle, J (1994). An Application of Fourier Series to the Most Significant Digit Problem. American Mathematical Monthly 101(9), pp. 879-886. ISSN/ISBN:0002-9890. DOI:10.2307/2975136. | ||||
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358. | ||||
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152. | ||||
Feller, W (1971). An Introduction to Probability Theory and Its Applications. 2nd ed., J. Wiley (see p 63, vol 2). | ||||
Fewster, RM (2009). A Simple Explanation of Benford's Law. American Statistician 63(1), pp. 26-32. DOI:10.1198/tast.2009.0005. | ||||
Gauvrit, N and Delahaye, J-P (2008). Pourquoi la loi de Benford n’est pas mystérieuse - A new general explanation of Benford’s law. Mathematiques et sciences humaines/ Mathematics and social sciences, 182(2), pp. 7-15. ISSN/ISBN:0987-6936. DOI:10.4000/msh.10363. FRE | ||||
Gauvrit, N and Delahaye, J-P (2009). Scatter and regularity imply Benford's Law ... and more. Preprint arXiv: 0910.1359 [math.PR]; last accessed July 18, 2018 . | ||||
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE | ||||
Good, IJ (1986). Some statistical applications of Poisson’s work. Statistical Science 1(2), pp. 157-170. | ||||
Hamming, R (1970). On the distribution of numbers. Bell Syst. Tech. J. 49(8), pp. 1609-1625. ISSN/ISBN:0005-8580. DOI:10.1002/j.1538-7305.1970.tb04281.x. | ||||
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952. | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815. | ||||
Hürlimann, W (2006). Benford's Law from 1881 to 2006: A Bibliography. posted on math arXiv July 6, 2006; last accessed February 28, 2016. | ||||
Janvresse, E (2009). Quel est le début de ce nombre?. Images des Mathématiques, 26 December. FRE | ||||
Janvresse, E and de la Rue, T (2004). From Uniform Distributions to Benford’s Law. Journal of Applied Probability 41(4), pp. 1203-1210. ISSN/ISBN:0021-9002. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851. | ||||
Poincaré, H (1912). Répartition des décimales dans une table numérique. pp 313-320 in: Calcul des Probabilités, Gauthier-Villars, Paris. FRE | ||||
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349. | ||||
Raimi, RA (1985). The First Digit Phenomenon Again. Proceedings of the American Philosophical Society 129(2), pp. 211-219. ISSN/ISBN:0003-049X. | ||||
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. | ||||
Tao, T (2009). Benford’s law, Zipf’s law, and the Pareto distribution . Terence Tao's math blog site. |