View Complete Reference

Humenberger, H (1997)

Eine Ergänzung zum Benford-Gesetz — weitere mögliche schulrelevante Aspekte

Stochastik in der Schule 17(3), pp. 42–48.

ISSN/ISBN: Not available at this time. DOI: Not available at this time.

Note - this is a foreign language paper: GER



Abstract: In Humenberger (1996) wurde das Problem näher beleuchtet, warum die Auftrittswahrscheinlichkeit P(k) einer Ziffer k, als erste Ziffer einer Zufallszahl zu stehen, nicht für alle 9 möglichen Ziffern jeweils 1/9 beträgt, sondern von 1 bis 9 abnimmt nach einem logarithmischen Gesetz, das nach Benford benannt ist. Dieses Gesetz gilt für beliebige ''physikalische Konstanten'' als mögliche Zufallszahlen, wie sich aus der Forderung nach Skaleninvarianz ergibt. Statt reellen Zahlen kann man zunächst natürliche Zahlen als potentielle Zufallswerte nehmen und fragen, wie dann die Auftrittswahrscheinlichkeiten sich abschätzen lassen. Genau dies ist der Inhalt dieses Ergänzungsbeitrages, der ausschließlich elementarste Schulmathematik enthält und uns dadurch für selbständige Schüleraktivitäten besonders geeignet erscheint.


Bibtex:
@article{, author = {Humenberger, Hans}, title = {Eine Ergaenzung zum BENFORD-Gesetz - weitere moegliche schulrelevante Aspekte}, year = {1997}, journal = {Stochastik in der Schule}, volume = {17}, pages = {42-48}, }


Reference Type: Journal Article

Subject Area(s): Mathematics Education