View Complete Reference

Lu, F and Boritz, JE (2005)

Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford’s Law Distributions

Machine Learning: ECML 2005 (Proceedings). Lecture Notes in Artificial Intelligence 3270, pp. 633-640.

ISSN/ISBN: 0302-9743 DOI: Not available at this time.

Abstract: Benford’s Law specifies the probabilistic distribution of digits for many commonly occurring phenomena, ideally when we have complete data of the phenomena. We enhance this digital analysis technique with an unsupervised learning method to handle situations where data is incomplete. We apply this method to the detection of fraud and abuse in health insurance claims using real health insurance data. We demonstrate improved precision over the traditional Benford approach in detecting anomalous data indicative of fraud and illustrate some of the challenges to the analysis of healthcare claims fraud.

@incollection{, title={Detecting fraud in health insurance data: Learning to model incomplete Benford’s law distributions}, author={Lu, Fletcher and Boritz, J Efrim}, booktitle={Machine Learning: ECML 2005}, pages={633--640}, year={2005}, publisher={Springer}, ISSN={0302-9743}, }

Reference Type: Journal Article

Subject Area(s): Statistics