Nature -Scientific Reports 5:12046, pp. 1-8 .
ISSN/ISBN: Not available at this time. DOI: 10.1038/srep12046
Abstract: Working with a large temporal dataset spanning several decades often represents a challenging task, especially when the record is heterogeneous and incomplete. The use of statistical laws could potentially overcome these problems. Here we apply Benford’s Law (also called the “First-Digit Law”) to the traveled distances of tropical cyclones since 1842. The record of tropical cyclones has been extensively impacted by improvements in detection capabilities over the past decades. We have found that, while the first-digit distribution for the entire record follows Benford’s Law prediction, specific changes such as satellite detection have had serious impacts on the dataset. The least- square misfit measure is used as a proxy to observe temporal variations, allowing us to assess data quality and homogeneity over the entire record, and at the same time over specific periods. Such information is crucial when running climatic models and Benford’s Law could potentially be used to overcome and correct for data heterogeneity and/or to select the most appropriate part of the record for detailed studies.
Bibtex:
@article {,
AUTHOR = {Renaud Joannes-Boyau and Thomas Bodin and Anja Scheffers and Malcolm Sambridge and Simon Matthias May},
TITLE = {Using Benford’s law to investigate Natural Hazard dataset homogeneity},
JOURNAL = {Nature},
YEAR = {2015},
VOLUME = {5},
MONTH - {July},
PAGES = {1--8},
NOTE -= {Scientific Reports}
DOI = {10.1038/srep12046},
URL = {http://www.nature.com/articles/srep12046},
}
Reference Type: Magazine Article
Subject Area(s): Applied Mathematics, General Interest, Natural Sciences, Statistics