This work is cited by the following items of the Benford Online Bibliography:
| Afanasiev, S, Smirnova, A and Kotereva, D (2021). Itsy Bitsy SpiderNet: Fully Connected Residual Network for Fraud Detection. Preprint arXiv:2105.08120 [cs.LG]; last accessed May 24, 2021. |
|
|
|
|
| Aggarwal, V and Dharni, K (2020). Deshelling the Shell Companies Using Benford’s Law: An Emerging Market Study. Vikalpa 45(3), pp. 160-169. DOI:10.1177/0256090920979695. |
|
|
|
|
| Agyemang, EF, Nortey, ENN, Minkah, R and Asah-Asante, K (2023). The unfolding mystery of the numbers: First and second digits based comparative tests and its application to ghana’s elections. Model Assisted Statistics and Applications 18(2), pp. 183-192. DOI:10.3233/MAS-221418. |
|
|
|
|
| Antunes, AM, Teixeira, D and Sousa, F (2023). Benford’s Law: the fraud detection’s left hand. Proceedings of 18th Iberian Conference on Information Systems and Technologies (CISTI), Aveiro, Portugal, pp. 1-6. DOI:10.23919/CISTI58278.2023.10211738. |
|
|
|
|
| Aris, NA, Othman, R, Bukhori, MAM, Arif, SMM and Malek, MAA (2017). Detecting Accounting Anomalies Using Benford’s Law: Evidence from the Malaysian Public Sector. Management & Accounting Review 16(2), pp. 73-100. |
|
|
|
|
| Ausloos, M, Cerqueti, R and Mir, TA (2017). Data science for assessing possible tax income manipulation: The case of Italy. Chaos, Solitons and Fractals 104, pp. 238–256. DOI:10.1016/j.chaos.2017.08.012. |
|
|
|
|
| Barabesi, L, Cerasa, A, Cerioli, A and Perrotta, D (2021). On characterizations and tests of Benford’s law. Journal of the American Statistical Association 117(540), pp. 1887-1903. DOI:10.1080/01621459.2021.1891927. |
|
|
|
|
| Barabesi, L, Cerioli, A and Perrotta, D (2021). Forum on Benford’s law and statistical methods for the detection of frauds. Statistical Methods & Applications 30, pp. 767–778. DOI:10.1007/s10260-021-00588-0. |
|
|
|
|
| Brown, MS (2012). Does the Application of Benford's Law Reliably Identify Fraud on Election Day? . Masters thesis, Georgetown University. |
|
|
|
|
| Burns, BD (2009). Sensitivity to statistical regularities: People (largely) follow Benford’s law. pp 2872-2877 in: Proceedings of CogSci 2009, Amsterdam, The Netherlands. |
|
|
|
|
| Cantu, F and Saiegh, SM (2010). A Supervised Machine Learning Procedure to Detect Electoral Fraud Using Digital Analysis. Preprint posted on SSRN; last accessed August 5, 2021. DOI:10.2139/ssrn.1594406. |
|
|
|
|
| Cerri, J (2018). A fish rots from the head down: how to use the leading digits of ecological data to detect their falsification. Preprint, bioRxiv p. 368951. DOI:10.1101/368951. |
|
|
|
|
| Chi, D (2020). First Digit Phenomenon in Number Generation Under Uncertainty: Through the Lens of Benford’s Law. Master's thesis, School of Psychology, University of Sydney. |
|
|
|
|
| Çubukcu, S (2009). Muhasebe Hilelerini Ortaya Çikarmada Benford Modeli'nin İlk İki Basamak Yaklaşimi İle Kullanilmasi [Using Benford Model in First Two Step Approach to Reveal Accounting Cheats]. World of Accounting Science 11(3), pp. 113-142. TUR |
|
|
|
|
| da Silva, CG and Carreira, PMR (2019). Estimating the Proportion of Misstated Records in an Audit Data set using Benford’s Law. Journal of Accounting, Finance and Auditing Studies 5(2), pp. 146-162. DOI:10.32602/jafas.2019.25. |
|
|
|
|
| Dlugosz, S and Müller-Funk, U (2009). The value of the last digit: statistical fraud detection with digit analysis. Advances in Data Analysis and Classification 3, pp. 281-290. DOI:10.1007/s11634-009-0048-5. |
|
|
|
|
| Fonseca, PMT da (2016). Digit analysis using Benford's Law: A Bayesian approach. Masters Thesis, ISEG - Instituto Superior de Economia e Gestão, Lisbon School of Economics & Management, Portugal. |
|
|
|
|
| Fu, B (2025). Leveraging Benford’s Law and Machine Learning for Financial Fraud Detection. Cybersecurity Undergraduate Research Showcase. 7. |
|
|
|
|
| Gardian, W (2025). Die digitale Betriebsprüfung in der Gastronomie Benford's Law in Theorie und Praxis [Digital auditing in the hospitality industry: Benford's Law in theory and practice]. Verlag Dr. Kovac; Reihe: QM - Quantitative Methoden in Forschung und Praxis; Reihen-Nr.55. ISSN/ISBN:978-3-339-14350-1. GER |
|
|
|
|
| Gauvrit, N, Houillon, J-C and Delahaye, J-P (2017). Generalized Benford’s Law as a Lie Detector. Advances in Cognitive Psychology 13(2), pp. 121-127. DOI:10.5709/acp-0212-x. |
|
|
|
|
| Gottwalt, F, Waller, A and Liu, W (2016). Natural Laws as a Baseline for Network Anomaly Detection. In: Proceedings of 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 370-377. DOI:10.1109/TrustCom.2016.0086. |
|
|
|
|
| Graham, SDJ, Hasseldine, J and Paton, D (2009). Statistical fraud detection in a commercial lobster fishery. New Zealand Journal of Marine and Freshwater Research Volume 43, Issue 1, pp. 457-463. DOI:10.1080/00288330909510014. |
|
|
|
|
| Haferkorn, M (2013). Humans vs. Algorithms – Who Follows Newcomb-Benford’s Law Better with Their Order Volume?. In: Rabhi F.A., Gomber P. (eds), Enterprise Applications and Services in the Finance Industry: Lecture Notes in Business Information Processing Volume 135, pp. 61-70 . ISSN/ISBN:9783642362187. DOI:10.1007/978-3-642-36219-4_4. |
|
|
|
|
| Hein, J, Zobrist, R, Konrad, C and Schuepfer, G (2012). Scientific fraud in 20 falsified anesthesia papers : detection using financial auditing methods. Der Anaesthesist 61(6), pp. 543-9. DOI:10.1007/s00101-012-2029-x. |
|
|
|
|
| Huang, SM, Yen, DC, Yang, LW and Hua, JS (2008). An investigation of Zipf's Law for fraud detection. Decision Support Systems 46(1), pp. 70-83. DOI:10.1016/j.dss.2008.05.003. |
|
|
|
|
| Hüllemann, S , Schüpfer, G and Mauch, J (2017). Application of Benford's law: a valuable tool for detecting scientific papers with fabricated data?. Der Anaesthesist vol. 66(10), pp. 795--802 . DOI:10.1007/s00101-017-0333-1. |
|
|
|
|
| Kennedy, AP and Yam, SCP (2020). On the authenticity of COVID-19 case figures. PLoS ONE 15(12): e0243123. DOI:10.1371/journal.pone.0243123. |
|
|
|
|
| Klepac, G (2018). Cognitive Data Science Automatic Fraud Detection Solution, Based on Benford’S Law, Fuzzy Logic with Elements of Machine Learning. In: Sangaiah, A., Thangavelu, A., Meenakshi Sundaram, V. (eds) Cognitive Computing for Big Data Systems Over IoT. Lecture Notes on Data Engineering and Communications Technologies, vol 14 . Springer, Cham., pp. 79-95. DOI:10.1007/978-3-319-70688-7_4. |
|
|
|
|
| Korauš, A, Gombár, M, Kelemen, P and Backa, S (2019). Using Quantitative Methods to Identify Security and Unusual Business Operations. Entrepreneurship And Sustainability Issues 6(3), pp.1101-1112. DOI:10.9770/jesi.2019.6.3(3). |
|
|
|
|
| Kundt, TC (2014). Applying "Benford's law" to the Crosswise Model: Findings from an online survey on tax evasion . Helmut-Schnidt-University, Department of Economics, Working Paper, 148/2014. |
|
|
|
|
| Lu, F (2007). Uncovering Fraud in Direct Marketing Data with a Fraud Auditing Case Builder. Lecture Notes in Computer Science 4702, pp. 540-547. ISSN/ISBN:978-3-540-74975-2. DOI:10.1007/978-3-540-74976-9_56. |
|
|
|
|
| Lu, F and Boritz, JE (2005). Detecting Fraud in Health Insurance Data: Learning to Model Incomplete Benford’s Law Distributions. Machine Learning: ECML 2005 (Proceedings). Lecture Notes in Artificial Intelligence 3270, pp. 633-640. ISSN/ISBN:0302-9743. |
|
|
|
|
| Lu, F, Boritz, JE and Covvey, D (2006). Adaptive Fraud Detection Using Benford’s Law. Advances in Artificial Intelligence Lecture Notes in Computer Science Volume 4013, pp. 347-358. ISSN/ISBN:978-3-540-34628-9. DOI:10.1007/11766247_30. |
|
|
|
|
| Macías, ALO and Ogua, ST (2018). Encontrando datos anómalos en la tributación. Aplicación de la Ley de Benford en el Impuesto a la Renta en Ecuador [Finding anomalous data in taxation. Application of the Benford Law on Income Tax in Ecuador]. SaberEs 10(2), pp. 173-188. SPA |
|
|
|
|
| Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:978-0-691-14761-1. |
|
|
|
|
| Morzy, M, Kajdanowicz, T and Szymański, BK (2016). Benford’s Distribution in Complex Networks. Scientific Reports 6:34917. DOI:1038/srep34917. |
|
|
|
|
| Mucko, P and Adamczyk, A (2023). Does the bankrupt cheat? Impact of accounting manipulations on the effectiveness of a bankruptcy prediction. PLoS ONE 18(1), e0280384. ISSN/ISBN:1932-6203. DOI:10.1371/journal.pone.0280384. |
|
|
|
|
| Nigrini, MJ (2011). Forensic Analytics: Methods and Techniques for Forensic Accounting Investigations. John Wiley & Sons: Hoboken, New Jersey; (2nd edition published in 2020, isbn 978-1-119-58576-3). ISSN/ISBN:978-0-470-89046-2. |
|
|
|
|
| O'Keefe, J and Yom, C (2017). Offsite Detection of Insider Abuse and Bank Fraud among U.S. Failed Banks 1989-2015. Available at SSRN: https://ssrn.com/abstract=3013174. DOI:10.2139/ssrn.3013174. |
|
|
|
|
| Otey, ME (2006). Approaches to Abnormality Detection with Constraints. PhD thesis, The Ohio State University, USA. |
|
|
|
|
| Scholes, CA (2023). Utilising forensic tools to assist in chemical engineering capstone assessment grading. Education for Chemical Engineers 45, pp. 61-67 . DOI:10.1016/j.ece.2023.08.001. |
|
|
|
|
| Schüpfer, G, Hein, J, Casutt, M, Steiner, L and Konrad, C (2012). Vom Finanz- sum Wissenschaftsbetrug [From financial to scientific fraud : methods to detect discrepancies in the medical literature]. Der Anaesthesist 61(6):537-42. ISSN/ISBN:0003-2417. DOI:10.1007/s00101-012-2028-y. GER |
|
|
|
|
| Shahana, T, Lavanya, V and Bhat, AR (2023). State of the art in financial statement fraud detection: A systematic review. Technological Forecasting and Social Change 192, p. 122527 . DOI:10.1016/j.techfore.2023.122527. |
|
|
|
|
| Suh, I and Headrick, TC (2010). A comparative analysis of the bootstrap versus traditional statistical procedures applied to digital analysis based on Benford's Law. Journal of Forensic and Investigative Accounting 2(2), 2010, 144-175. |
|
|
|
|
| Tsagbey, S, de Carvalho, M and Page, GL (2017). All Data are Wrong, but Some are Useful? Advocating the Need for Data Auditing . The American Statistician, 71, pp. 231--235. DOI:10.1080/00031305.2017.1311282. |
|
|
|
|
| Tsung, F, Zhou, Z and Jiang, W (2007). Applying manufacturing batch techniques to fraud detection with incomplete customer information. IIE Transactions 39(6), pp. 671-680. DOI:10.1080/07408170600897510. |
|
|
|
|
| Yang, S and Wei, L (2010). Detecting money laundering using filtering techniques: a multiple‐criteria index. Journal of Economic Policy Reform 13(2), pp. 159-178. DOI:10.1080/17487871003700796. |
|
|
|
|
| Yin, H (2015). Financial statement conformance to Benford's law and audit fees. Masters thesis, Macquarie University, Sydney, Australia . |
|
|
|