Cross Reference Up

Bhosale, S and Di Troia, F (2022). Twitter Bots’ Detection with Benford’s Law and Machine Learning. In Proceedings of Silicon Valley Cybersecurity Conference. SVCC 2022. Communications in Computer and Information Science, vol 1683, Bathen, L., Saldamli, G., Sun, X., Austin, T.H., Nelson, A.J. (eds). Springer, Cham.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Shen, RY (2025). Autonomous learning behaviors in an online coding community: A comparison between project viewing/playing and code remixing in Scratch using Benford’s law. Journal of Digital Educational Technology 5(1), pp. ep2501. DOI:10.30935/jdet/15808. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Sushkov, VM, Leonov, PY, Nadezhina, OS and Blagova, IY (2023). Integrating Data Mining Techniques for Fraud Detection in Financial Control Processes. International Journal of Technology 14(8), pp. 1675-1684. DOI:10.14716/ijtech.v14i8.6830. View Complete Reference Online information Works that this work references No Bibliography works reference this work
Torres-Zúñiga, V (2024). Hoja de cálculo de la ley de Newcomb-Benford con datos científicos, ChatGPT, censo y COVID-19 en México. Preprint del Manuscrito, incluido en el libro: Argumentos y usos tecnopedagógicos de la inteligencia artificial SOMECE, pp. 370-385 . ISSN/ISBN:978-607-59406-3-2. SPA View Complete Reference Online information Works that this work references No Bibliography works reference this work