Cabarle, C (2019). Predicting the Risk of Fraud in Equity Crowdfunding Offers and Assessing the Wisdom of the Crowd. PhD Thesis, Temple University, ProQuest Dissertations Publishing, 2019. 13863507.





Druica, E, Oancea, B and Valsan, C (2018). Benford's law and the limits of digit analysis. International Journal of Accounting Information Systems 31, pp. 75–82. DOI:10.1016/j.accinf.2018.09.004.





González, F (2019). Detecting Anomalous Data in Household Surveys: Evidence for Argentina. Journal of Social and Economic Statistics 8(2), pp. 110. DOI:10.2478/jses20190001.





González, F (2020). Selfreported income data: are people telling the truth?. To appear in Journal of Financial Crime. DOI:10.1108/JFC0820190113.





Mills, RJ, Beaulieu, TY, Feldon, DF and Olsen, DH (2020). Implications of Prelecture Material on Cognitive Load and Instructional Effectiveness in Cross‐Disciplinary IS Education: The Nexus of Benford's Law and SQL. Decision Sciences Journal of Innovative Education 18, pp. 313338. DOI:10.1111/dsji.12206.





Nigrini, MJ (2019). The patterns of the numbers used in occupational fraud schemes. Managerial Auditing Journal 34(5), pp. 606626. DOI:10.1108/MAJ1120171717.





Pavlović, V, Knežević, G, Joksimović, M and Joksimović, D (2019). Fraud Detection in Financial Statements Applying Benford's Law with Monte Carlo Simulation. Acta oeconomica 69(2), pp.217239. DOI:10.1556/032.2019.69.2.4.





Said, T and Mohammed, K (2020). Detection of anomaly in socioeconomic databases, by Benford probability law. 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), Beni Mellal, Morocco, 2020, pp. 14. DOI:10.1109/ICOA49421.2020.9094466.




