Iorliam, A (2019). Combination of Natural Laws (Benford’s Law and Zipf’s Law) for Fake News Detection. In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham. DOI:10.1007/9783030152109_3.





Iorliam, A, Ho, ATS, Poh, N and Shi, YQ (2014). Do Biometric Images Follow Benford's Law?. Proceedings of the 22nd European Signal Processing Conf.(Eusipco). DOI:10.1109/IWBF.2014.6914261.





Iorliam, A, Ho, ATS, Waller, A and Zhao, X (2017). Using Benford's Law Divergence and Neural Networks for Classification and Source Identification of Biometric Images. In: Shi Y., Kim H., PerezGonzalez F., Liu F. (eds) Digital Forensics and Watermarking. IWDW 2016. Lecture Notes in Computer Science, vol 10082. Springer, Cham, pp. 88105. DOI:10.1007/9783319534657_7.





Iorliam, A and Shangbum, FC (2017). On the Use of Benford’s Law to Detect JPEG Biometric Data Tampering. Journal of Information Security 8, pp. 240256. DOI:10.4236/jis.2017.83016.





Iorliam, A, Tirunagari, S, Ho, ATS, Li, S, Waller, A and Poh, N (2017). "Flow Size Difference" Can Make a Difference: Detecting Malicious TCP Network Flows Based on Benford's Law. arXiv:1609.04214v2 [cs.CR], last accessed February 6, 2017.





Joksimović, D, Knežević, G, Pavlović, V, Ljubić, M and Surovy, V (2017). Some Aspects of the Application of Benford’s Law in the Analysis of the Data Set Anomalies. In: Knowledge Discovery in Cyberspace: Statistical Analysis and Predictive Modeling. New York: Nova Science Publishers, pp. 85–120. ISSN/ISBN:9781536105667.




