Becker, T, Burt, D, Corcoran, TC, GreavesTunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, FW and Talbut, B (2018). Benford's Law and Continuous Dependent Random Variables. Annals of Physics 388, pp. 350–381. DOI:10.1016/j.aop.2017.11.013.





Becker, T, Corcoran, TC, GreavesTunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J and Strauch, FW (2013). Benford's Law and Continuous Dependent Random Variables. Preprint arXiv:1309.5603 [math.PR]; last accessed October 23, 2018. DOI:10.1016/j.aop.2017.11.013.





Berger, A (2015). Most linear flows on ℝ^d are Benford
. Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016.





Berger, A and Eshun, G (2014). A characterization of Benford's law in discretetime linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:10407294. DOI:10.1007/s108840149393y.





Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 2360. ISSN/ISBN:9783662441398. DOI:10.1007/9783662441404_2.





Cai, Z, Hildebrand, AJ and Li, J (2018). A local Benford Law for a class of arithmetic sequences. Preprint arXiv:1808.01496 [math.NT]; last accessed October 22, 2018.





Chen, E, Park, PS and Swaminathan, AA (2016). On logarithmically Benford Sequences. Proc. Amer. Math. Soc. 144, pp. 45994608. DOI:10.1090/proc/13112 .





He, X, Hildebrand, AJ, Li, Y and Zhang, Y (2018). Complexity of Leading Digit Sequences. Preprint in arXiv:1804.00221 [math.NT]; last accessed October 23, 2018.





Jameson, M, Thorner, J and Ye, L (2014). Benford's Law for Coefficients of Newforms. arXiv:1407.1577 [math.NT]; posted July 7, 2014; last accessed November 10, 2014.





Manack, C and Miller, SJ (2015). Leading digit laws on linear Lie groups. Research in Number Theory 1:22. DOI:10.1007/s4099301500244.





Massé, B and Schneider, D (2015). Fast growing sequences of numbers and the first digit phenomenon
. International Journal of Number Theory 11:705, pp. 705719. DOI:10.1142/S1793042115500384.





Miller, SJ (ed.) (2015). Benford's Law: Theory and Applications. Princeton University Press: Princeton and Oxford. ISSN/ISBN:9780691147611.




